个人简介
杨烈,特聘教授,南昌大学高层次人才,主要研究方向有:深度学习,计算机视觉,自动驾驶系统的智能感知,脑电信号解码和脑机接口技术等。2021年毕业于华南理工大学,获得工学博士学位。2022年3月加入海南大学计算机科学与技术学院,被聘为特聘副教授。2022年10月赴新加坡南洋理工大学机械与宇航工程学院(MAE)从事博士后研究。2025年2月初回国,加入南昌大学先进制造学院,被聘为特聘教授。 近五年发表SCI论文20余篇,其中以第一作者身份发表SCI论文7篇,并获得已授权的发明专利8项。在博士期间参与了国家自然科学基金2项,参与省部级项目2项;在南洋理工大学从事博士后研究期间参与了国际合作项目2项。曾获国家奖学金,校长奖学金,校特等奖学金,校一等奖学金。2021年9月获得世界机器人大赛-BCI脑控机器人大赛,全国总决赛二等奖,2021年底被评为“广东省优秀学生”。
欢迎您的加入
欢迎具自动化、机械、计算机、电子信息等专业背景,并且对本团队研究方向感兴趣的青年老师、博士后、博士生、硕士生、本科生与我联系~ 欢迎大家过来进行学术交流,欢迎加入本课题组!
地址:江西省南昌市红谷滩新区学府大道999号南昌大学前湖校区机电楼D509
学校邮箱:lie.yang@ncu.edu.cn
个人邮箱:lieyangme@outlook.com
团队的主要研究方向
- 基于多模态数据融合的驾驶场景分析:通过深度学习、计算机视觉、传感器融合等技术,实现对道路、车辆、行人、交通标志、天气条件等多维度信息的实时分析与理解,进而为自动驾驶系统提供精准的环境感知和决策支持。研究重点包括多模态数据的对齐与融合、驾驶场景的风险评、驾驶场景中各种事件的理解、各种道路参与者的行为预测等任务。
- 基于深度学习的脑电信号解码与脑机接口技术研究:研究内容包括脑电信号的预处理、特征提取、模式识别以及实时解码算法的优化,同时探索如何将解码结果应用于脑机接口(BCI)系统中,实现对外部设备(如机械臂、轮椅、计算机等)的精确控制。研究还涉及跨被试泛化、小样本学习以及多模态脑信号融合等前沿问题。
- 面向医疗场景的人机交互:主要研究如何设计智能化的交互系统,以支持护理人员、患者及老年人等人群在医疗和日常护理中的需求。研究内容包括自然语言处理、情感计算、计算机视觉、机器人技术等多领域的融合,旨在开发能够理解用户意图、情感状态和行为的交互系统。具体研究方向涉及语音助手、情感识别机器人、智能监控系统以及远程护理平台的设计与优化,同时关注交互系统的易用性、安全性和隐私保护。
学术兼职
客座编辑:
- Lead Guest Editor, Special Issue on “Application of Deep Learning in Intelligent Machines” at MDPI Machines, 2023-2024.
- Lead Guest Editor, Special Issue on “The Application of Deep Learning in Intelligent Vehicle Perception Systems” at MDPI Vehicles, 2024-2025.
参与审稿的主要期刊:
- IEEE Transactions on Intelligent Transportation Systems,
- IEEE Transactions on Vehicular Technology,
- IEEE Transactions on Intelligent Vehicles,
- IEEE Transactions on Systems, Man and Cybernetics: Systems,
- IEEE Transactions on Neural Systems and Rehabilitation Engineering,
- IEEE Journal of Biomedical and Health Informatics,
- Journal of Neural Engineering,
- IEEE Transactions on Neural Networks and Learning Systems,
- IEEE/CAA Journal of Automatica Sinica,
- Measurement Science and Technology等。
近五年的代表性论文
- Lie Yang, Haohan Yang, Bin-Bin Hu, Yan Wang, Chen Lv. “A Robust Driver Emotion Recognition Method Based on High-Purity Feature Separation”. IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 12, pp. 15092-15104, Dec. 2023, IF=7.9, 中科院一区,top期刊.
- Lie Yang, Haohan Yang, Henglai Wei, Zhongxu Hu and Chen Lv, “Video-Based Driver Drowsiness Detection with Optimised Utilization of Key Facial Features,” in IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 7, pp. 6938-6950, July 2024, IF=7.9, 中科院一区,top期刊.
- Lie Yang, Yong Tian, Yonghao Song, Nachuan Yang, Ke Ma, Longhan Xie, “A novel feature separation model exchange-GAN for facial expression recognition”, Knowledge-Based Systems, Vol 204, 2020.09, 106217, IF=7.2, 中科院一区,top期刊.
- Lie Yang, Yonghao Song, Ke Ma, Longhan Xie, “Motor Imagery EEG Decoding Method Based on a Discriminative Feature Learning Strategy”, IEEE Transactions on Neural System and Rehabilitation Engineering, Vol 29, 2021, IF=4.8, Page(368-379),中科院二区.
- Lie Yang, Yonghao Song, Ke Ma, Enze Su, Longhan Xie, “A Novel Motor Imagery EEG Decoding Method Based on Feature Separation”, Journal of Neural Engineering, 2021, Vol 18, 036022,IF=3.7,中科院二区.
- Lie Yang, Yonghao Song, Xueyu Jia, Ke Ma, and Longhan Xie, “Two-Branch 3D Convolutional Neural Network for Motor Imagery EEG decoding”, Journal of Neural Engineering, 2021, Vol 18, 0460c7, IF=3.7,中科院二区.
- Lie Yang, Guanghua Hu, Yonghao Song, Guofeng Li, Longhan Xie, “Intelligent video analysis: A Pedestrian trajectory extraction method for the whole indoor space without blind areas”, Computer Vision and Image Understanding, Vol196, 2020, 102968 , IF=4.3, 中科院三区.
- Ziyang Zhang, Lie Yang, Chen Lv. “Swin Transformer Based Driver Distraction Detection with High Discriminative Feature Learning”, Vehicles, 2024.
- Yonghao Song, Siqi Cai, Lie Yang, Guofeng Li, Weifeng Wu, Longhan Xie, “A Practical EEG-based Human-Machine Interface to Online Control an Upper-Limb Assist Robot”,Frontiers in Neurorobotics, 2020.07, Vol 14, IF=2.65, 中科院三区.
- Guo Yang, Yong Zhong, Lie Yang, Ruxu Du,“Fault Detection of Harmonic Drive Using Multiscale Convolutional Neural Network”, IEEE Transactions on Instrumentation and Measurement, 2020.09, Vol 70, 3502411, IF = 4.016, 中科院二区.
- Guo Yang, Yong Zhong, Lie Yang, Ruxu Du, “Fault Diagnosis of Harmonic Drive with Imbalanced Data Using Generative Adversarial Network”, IEEE Transactions on Instrumentation and Measurement, 2021.06, Vol 70, 3519911, IF = 4.016, 中科院二区.
- Yan Chen, Ke Ma, Lie Yang, Song Yu, Siqi Cai, “Trunk Compensation Electromyography Features Purification and classification model using Generative Adversarial Network”, Biomedical Signal Processing and Control,65(2021):102345,IF=3.88, 中科院二区.
- Xueyu Jia, Yonghao Song, Lie Yang, Longhan Xie, “Joint spatial and temporal features extraction for multi-classification of motor imagery EEG”. Biomedical Signal Processing and Control, 2022, 71: 103247,IF=3.88, 中科院二区.
- Xiao Wang, Jun Huang, Yonglin Tian, Chen Sun, Lie Yang, Shanhe Lou, Lv Chen, Changyin Sun, and Feiyue Wang. “Parallel Driving with Big Models and Foundation Intelligence in Cyber-Physical-Social Spaces”. Research,2024,IF=11,中科院一区,top期刊.
- Jingda Wu, Haohan Yang, Lie Yang, Yi Huang, Xiangkun He, and Chen Lv. “Human-Guided Deep Reinforcement Learning for Optimal Decision Making of Autonomous Vehicles”. IEEE Transactions on Systems, Man and Cybernetics: Systems,IF=8.7,中科院一区,top期刊.
- Yiran Zhang, Shanhe Lou, Peng Hang, Wenhui Huang, Lie, Yang, and Chen Lv. “Interactive Prediction and Decision-Making for Autonomous Vehicles: Online Active Learning with Traffic Entropy Minimization”, IEEE Transactions on Intelligent Transportation Systems, early access, doi: 10.1109/TITS.2024.3419003, IF=8.5, 中科院一区,top期刊.
- Li Jingyuan, Yang Lie, Lv Chen, Yuan Chu, and Yahui Liu. GLF-STAF: A Global-Local-Facial Spatio-Temporal Attention Fusion Approach for Driver Emotion Recognition. IEEE Transactions on Consumer Electronics, DOI:10.1109/TCE.2025.3540321, IF=4.3, 中科院二区.
- Lijun Liu, Lie Yang, Mengjie Zhu, Liqiang Zou, Chen Lv, Hui Ye, Machine Learning-Driven Predictive Modeling for Lipid Oxidation Stability in Emulsions: A Smart Food Safety Strategy, Trends in Food Science & Technology, 2025, 104972, ISSN 0924-2244, IF=15.1, 中科院一区,top 期刊.
- Hao Yang, Yanxin Zhou, Jingda Wu, Haochen Liu, Lie Yang and Chen Lv, “Human-Guided Continual Learning for Personalized Decision-Making of Autonomous Driving,” in IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2024.3524609,IF=7.9, 中科院一区,top期刊.
- Yan Wang, Henglai Wei, Lie Yang, Bin-Bin Hu, Chen Lv, “A Review of Dynamic State Estimation for the Neighborhood System of Connected Vehicles”, SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2023, 7(10-07-03-0023),IF=2.9,中科院二区.
- Li, Jing, Jingyuan Li, Guo Yang, Lie Yang(通讯作者), Haozhuang Chi, and Lichao Yang. 2025. “Applications of Large Language Models and Multimodal Large Models in Autonomous Driving: A Comprehensive Review” Drones 9, no. 4: 238. IF=4.4,中科院三区.
- Yi-Fan Kang, Lie Yang, Kai Xu, Bin-Bin Hu, Lan-Jun Cai, Yin-Hao Liu, Xiang Lu, A lightweight intelligent laryngeal cancer detection system for rural areas, American Journal of Otolaryngology, Volume 45, Issue 6, 2024, 104474, ISSN 0196-0709, IF=1.8,中科院三区.
科研项目
- 2022~2024, the Agency for Science, Technology and Research (A∗STAR), Singapore, under Advanced Manufacturing and Engineering (AME) Young Individual Research, Grant A2084c0156. (参与者)
- 2022~2024, the Ministry of Education (MOE), Singapore, under the Tier 2, Grant MOE-T2EP50222-0002. (参与者)
- 2020~2021年, 国家自然科学基金面上项目:融合生理状态感知的可穿戴上肢康复外骨骼关键技术研究,项目批准号:52075177。(参与者)
- 2018~2019年, 中央高校基本科研项目:人工智能和生理信息融合驱动的康复机器人,项目编号:x2jqB5151730。(参与者)
- 2018~2020年, 广东省高校基础研究及应用基础研究重点项目:偏瘫上肢康复训练机器人关键技术研究,项目编号2018KZDXM002。 (参与者)
- 2018~2019年, 国家自然科学基金面上项目:基于人体自供能的下肢柔性助力外骨骼的原理及设计方法研究,项目批准号:51575188。(参与者)
- 2017~2018年, 广州市产学研协同创新重大专项:智能化种鸡成套饲养设备,项目编号:201508020025。(参与者)
- 2017~2018年, 与广州通达汽车电子有限公司合作项目:营运客车ADAS系统关键技术研究与开发,项目编号为x2jqD8174070。(参与者)
- 2016~2018年, 与日立(中国)研究开发有限公司的合作项目:图像解析和MES数据结合的技术,项目编号:x2jqD8164480。(参与者)